9,613 research outputs found

    Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL

    Full text link
    We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL), which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    Finite-state Strategies in Delay Games (full version)

    Full text link
    What is a finite-state strategy in a delay game? We answer this surprisingly non-trivial question by presenting a very general framework that allows to remove delay: finite-state strategies exist for all winning conditions where the resulting delay-free game admits a finite-state strategy. The framework is applicable to games whose winning condition is recognized by an automaton with an acceptance condition that satisfies a certain aggregation property. Our framework also yields upper bounds on the complexity of determining the winner of such delay games and upper bounds on the necessary lookahead to win the game. In particular, we cover all previous results of that kind as special cases of our uniform approach

    How Much Lookahead is Needed to Win Infinite Games?

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. For ω\omega-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient. We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing EXPTIME-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be PSPACE-complete. This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4 published originally on August 26, 2016

    Prompt Delay

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. Recently, such games with quantitative winning conditions in weak MSO with the unbounding quantifier were studied, but their properties turned out to be unsatisfactory. In particular, unbounded lookahead is in general necessary. Here, we study delay games with winning conditions given by Prompt-LTL, Linear Temporal Logic equipped with a parameterized eventually operator whose scope is bounded. Our main result shows that solving Prompt-LTL delay games is complete for triply-exponential time. Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the scope of the parameterized eventually operator. Thus, we identify Prompt-LTL as the first known class of well-behaved quantitative winning conditions for delay games. Finally, we show that applying our techniques to delay games with \omega-regular winning conditions answers open questions in the cases where the winning conditions are given by non-deterministic, universal, or alternating automata

    Parametric Linear Dynamic Logic

    Get PDF
    We introduce Parametric Linear Dynamic Logic (PLDL), which extends Linear Dynamic Logic (LDL) by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL) that is able to express all ω\omega-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic B\"uchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω\omega-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic B\"uchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    • …
    corecore